CORNELL

Learning Deep Representations for Ground-to-Aerial Geolocalization

Tsung-Yi LinT , Yin CuiT , Serge Belongie? , James Hays®
T Cornell Tech 5 Brown University

Learning Deep Feature Embedding

Detailed Analysis Visualization of Units’ Receptive Fields

Image based Geolocalization “Siamese” Network Effectiveness of training Strongest Activations of Particular Units
> Most previous methods: match query image to ground-level images with > A pair of inputimages x, y. Label | = 0 or 1 indicates > Histogram of Pairwise distances on test set: > lllustration of the average images and the top 9 images that activate a
know locations. _ 4096 whether x or y is a match or not. 12 certain unit most strongly at the output feature layer (fc7 layer).
> II\:/Iost of the Earth does not have ground-level reference photos available. B G maial > Aand B are two CNNs. We used same AlexNet a a
ortunately, more complete coverage is provided by aerial imagery. . : Ey g
: : o N 4 09 architecture for A and B in our paper. v v
v Localize a ground-level query image by matching it to aerial imagery. 5 5
_ _ Fully Connected » Aand B could be either identical with shared i i
P parameters (common feature space will be learned) £ £
3 or distinct (domain specific feature space will be
3 learned).
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el (a) ImageNet-CNN feature. (b) Where-CNN feature.
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Robustness of initialization (fine-tuning)
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% > We fine-tuned our CNN from ImageNet and Places datasets: > Trained Where-CNN on 4 US cities and test on 3 novel non-US cities.
3 e » Fraction of queries with true match in top 1% nearest neighbors.
' _ . . » x-axis: fraction of nearest neighbors considered; y-axis: fraction of queries
SIET + RANSAC fail Where-CNN ImageNet Init. Places Init. with true match in the nearest neighbors considered.
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> It is challenging to do key points matching from street-view to aerial-view B T el AP 41.9% 41.4%
» Occlusions and differences in scale, capturing time, image resolution, etc. _ 27x27x256 ‘
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v e Easy positives and hard negatives %

> Contrastive Loss: "o rom ror s P > The most similar true positives and false positives matches on test set. £
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Experiments — Location Verification

» Projecta 2D street view image to the aerial view.
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Experimental Setting

» Location verification: given a pair of street-view and aerial-view images,
identifying whether this pair comes from same location or not.

Geolocalization Examples
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> 37.5K (12.5K) positive pairs, together with 20x more generated negative » Examples of query images, the top 12 matched aerial images for that
pairs from 4 US cities are used for training (testing). In total 0.79M (0.26M) query, and the heat map that indicates possible locations.

pairs. Fine-tuned from pre-trained AlexNet on ImageNet. (b) Hard negative pairs. » The first 2 rows are success cases; and last 2 rows are failure cases.
Precision-Recall curve (mAP) Street-view Query Bird’s Eye Matches
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> 7 cities (4 US and 3 non-US): San Francisco, San Diego, Chicago, —— ImageNet-CNN (11.3)
Charleston, Tokyo, Rome, Lyon.

Heat Map

2-Dimentional Feature Embedding for Street-view

» We extracted 4096 dimensional features from Where-CNN on test set
and used t-SNE for dimension reduction.
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» 78K aligned street-view and aerial-view pairs. .g HOG2x2 BoW (7.9) g"
» Image resolution: 15 x 15 meters (256 x 256 pixels) (v 5
» Cardinal wewmg direction (aZ|muth) of 0° 90°270° for training, 180°for testmg. 95)_ 0.4 |
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» Where-CNN is our CNN model; DS means domain specific; Places-CNN
and ImageNet-CNN are AlexNetfeature from 2" |ast fully-connected layer
(fc7) trained on Places and ImageNet datasets respectively.




