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Introduction

Fine-Grained Visual Categorization (FGVC)
e On large-scale dataset: little prior work.
e On small-scale dataset: fine-tuning a network from
ImageNet pre-training.

Contributions

e A simple training scheme for large-scale FGVC.
o Best performance on iNaturalist 2017.
e A measure to quantify domain similarity.
e \We demonstrate higher domain similarity leads to
better transfer learning performance.
o Better than ImageNet pre-training.
o SOTA on 7 popular small-scale FGVC datasets.

Large-Scale FGVC - Image Resolution

Input Res. | Networks

224 x 224 | AlexNet [32], VGGNet [4%], ResNet [20]
299 x 299 | Inception |51, 52, 50]

320 X 320 | ResNetv2 [21], ResNeXt [6!], SENet [25]
331 x 331 | NASNet [/”]

e \Why not higher? Heavily tuned for ImageNet:

o Most ImageNet images are 500 x 375.
o MAX center crop size = 375 x 0.875 = 328.

e Higher resolution — Richer information and detalls
that are especially important for FGVC.

e \We show higher input resolution (e.g., 448, 560)
leads to significant improvement on iNaturalist.

Inc-v3 299 | Inc-v3448 | Inc-v3 560
Top-1 (%) 29.93 26.51 25.37
Top-5 (%) 10.61 9.02 8.56
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Image frequency

Large-Scale FGVC - Long-Tailed Distribution

e Real-world fine-grained datasets are long-tailed:
o Few classes have most data, whereas most

classes have few data.

e How to deal with the long-tail”? Two-stage training:

1. Train on the original dataset for feature learning.

2. Fine-tune on a balanced subset for transferring
from head classes to ta|I classes.
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B After

c-v4 560 Inc-ResNet-v2 560

Network and input image size

Before FT

After FT

Top-1 | Top-5

Top-1 | Top-5

Head: > 100 imgs
Tail: < 100 1mgs

19.28 5.79
29.89 9.12

17.33 4.87
24.15 6.41

e Source domain: ImageNet + iNaturalist.
e T[arget domain: 7 fine-grained datasets.
e Select a subset from source domaln by similarity.
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Transfer Learning Performance

Target Domain

CUB200 | Stanford Dogs | Flowers-102 | Stanford Cars | Aircraft | Food101 | NABirds
ImageNet 82.84 84.19 96.26 91.51 85.49 88.65 82.01
iNat 89.26 78.46 97.64 88.31 82.61 88.80 87.91
ImageNet + 1Nat 85.84 82.36 97.07 91.38 85.21 88.45 83.98
Subset A (832-class) 86.37 84.69 9765 91.42 86.28 88.78 84.79
Subset B (585-class) 88.76 85.25 97.37 90.58 86.13 88.37 87.89

e ImageNet and INaturalist are highly biased!

Domain Similarity in Transfer Learning

Transfer learning as transporting a set of images
from source domain to target domain.

Define domain similarity by Earth Mover's Distance
(EMD), based on distance of image feature.

e Similar source domain leads
to better transfer learning.
e A novel direction of studying

how to do better pre-training.
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Size: number of images.
Blue arrows: optimal
flow by solving EMD.
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e SOTA performance with off-the-self networks!

Transfer learning performance (%)
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Method

CUB200

Stanford Dogs | Stanford Cars | Aircrafts | Food101

Subset B (585-class): Inception-v3 89.6 86.3 93.1 89.6 90.1
Subset B (585-class): Inception-ResNet-v2 SE 89.3 88.0 93.5 90.7 90.4
Krause et al. [ 30] 82.0 - 92.6 - -
Bilinear-CNN [36] 84.1 901.3 84.1 82.4
Compact Bilinear Pooling [ ! /] 84.3 - 91,2 84.1 832
Zhang et al. [6¥] 84.5 720 - - -
Low-rank Bilinear Pooling [29] 84.2 - 90.9 87.3 -
Kernel Pooling [ ! !] 86.2 - 92.4 86.9 855
RA-CNN [16] 85.3 87.3 925 - -
Improved Bilinear-CNN [ 5] 85.8 - 92.0 88.5

MA-CNN [69] 86.5 92.8 89.9 -
DLA [65] 85.1 94.1 92.6 89.7




