

Introduction

Fine-Grained Visual Categorization (FGVC)

- On large-scale dataset: little prior work.
- On small-scale dataset: fine-tuning a network from ImageNet pre-training.

Contributions

- A simple training scheme for large-scale FGVC. Best performance on iNaturalist 2017. 0 • A measure to quantify domain similarity.
- We demonstrate higher domain similarity leads to better transfer learning performance.
 - Better than ImageNet pre-training. \bigcirc
 - SOTA on 7 popular small-scale FGVC datasets.

Large-Scale FGVC - Image Resolution

13		
	Input Res.	Networks
	224×224	AlexNet [33], VGGNet [48], ResNe
	299×299	Inception [51, 52, 50]
	320×320	ResNetv2 [21], ResNeXt [61], SEN
	331×331	NASNet [72]

- Why not higher? Heavily tuned for ImageNet: Most ImageNet images are 500 x 375. 0
 - MAX center crop size = $375 \times 0.875 = 328$.
- Higher resolution \rightarrow Richer information and details that are especially important for FGVC.
- We show higher input resolution (e.g., 448, 560) leads to significant improvement on iNaturalist. -v3 560 25.37 8.56

	Inc-v3 299	Inc-v3 448	Inc-
Top-1 (%)	29.93	26.51	
Top-5 (%)	10.61	9.02	

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning

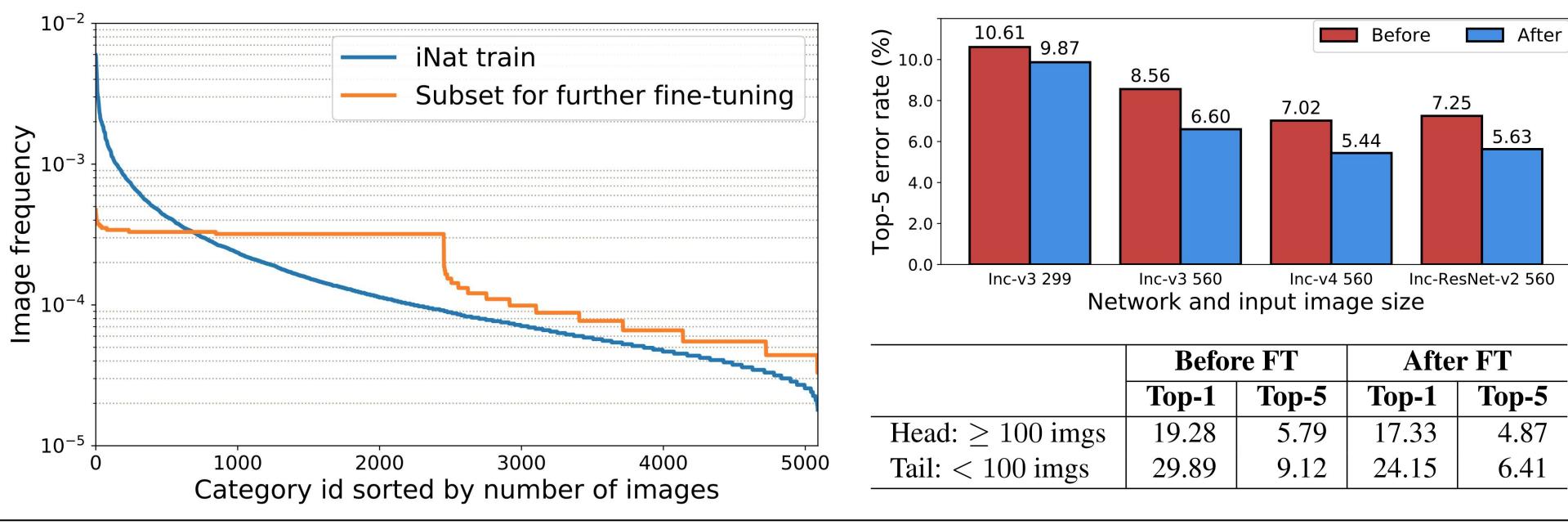
Yin Cui^{1,2}, Yang Song³, Chen Sun³, Andrew Howard³, Serge Belongie^{1,2}

¹ Department of Computer Science, Cornell University ² Cornell Tech ³Google AI

- et [20]
- Jet [23]

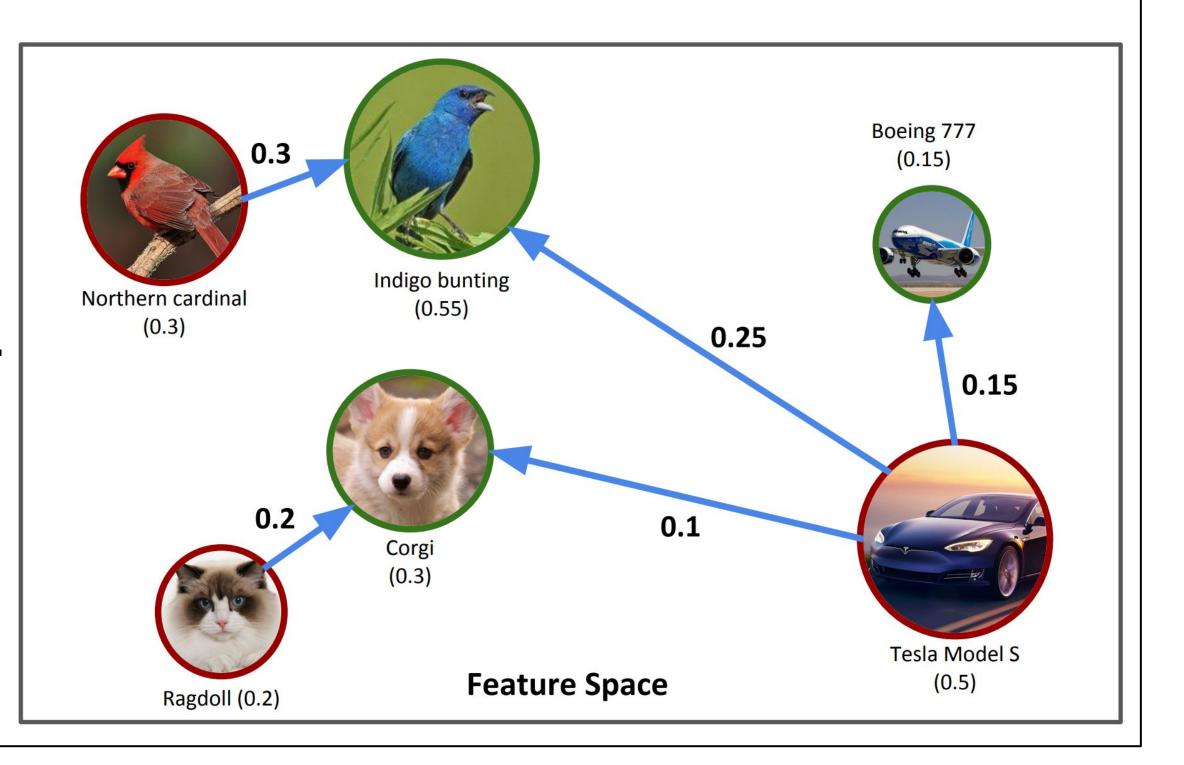
Large-Scale FGVC - Long-Tailed Distribution

• Real-world fine-grained datasets are long-tailed: • Few classes have most data, whereas most classes have few data. • How to deal with the long-tail? Two-stage training: from head classes to tail classes.



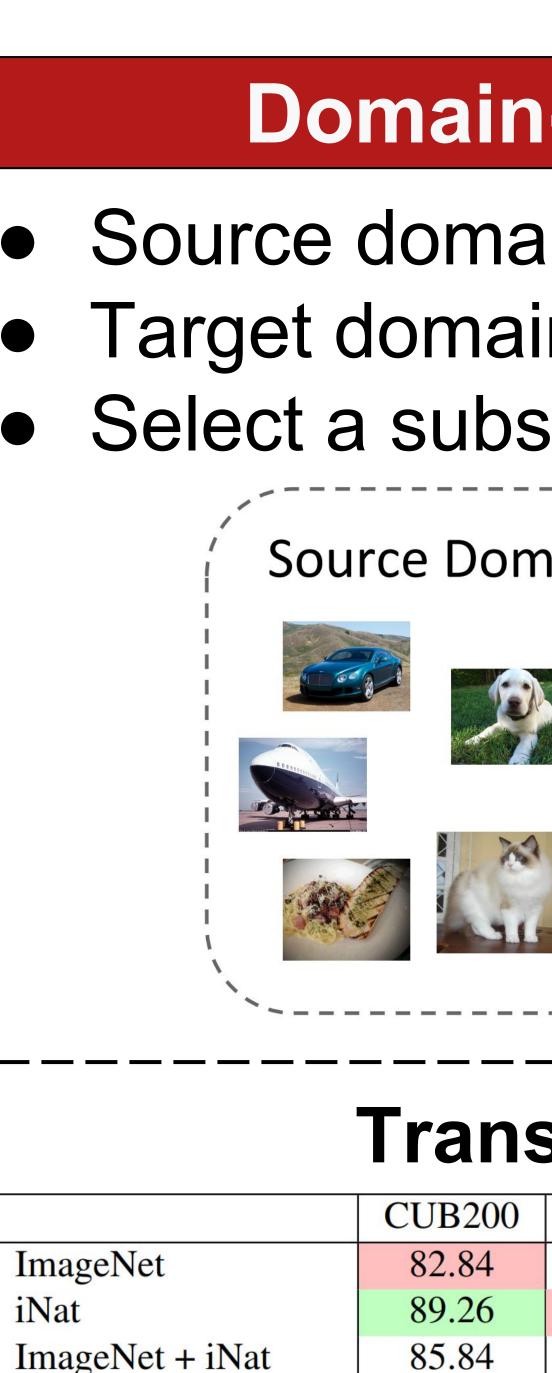
Domain Similarity in Transfer Learning

- Transfer learning as transporting a set of images from source domain to target domain.
- (EMD), based on distance of image feature.
- Source domain (red)
- Target domain (green)
- Size: number of images.
- Blue arrows: optimal flow by solving EMD.



1. Train on the original dataset for feature learning. 2. Fine-tune on a balanced subset for transferring

• Define domain similarity by Earth Mover's Distance



Subset A (832-class)

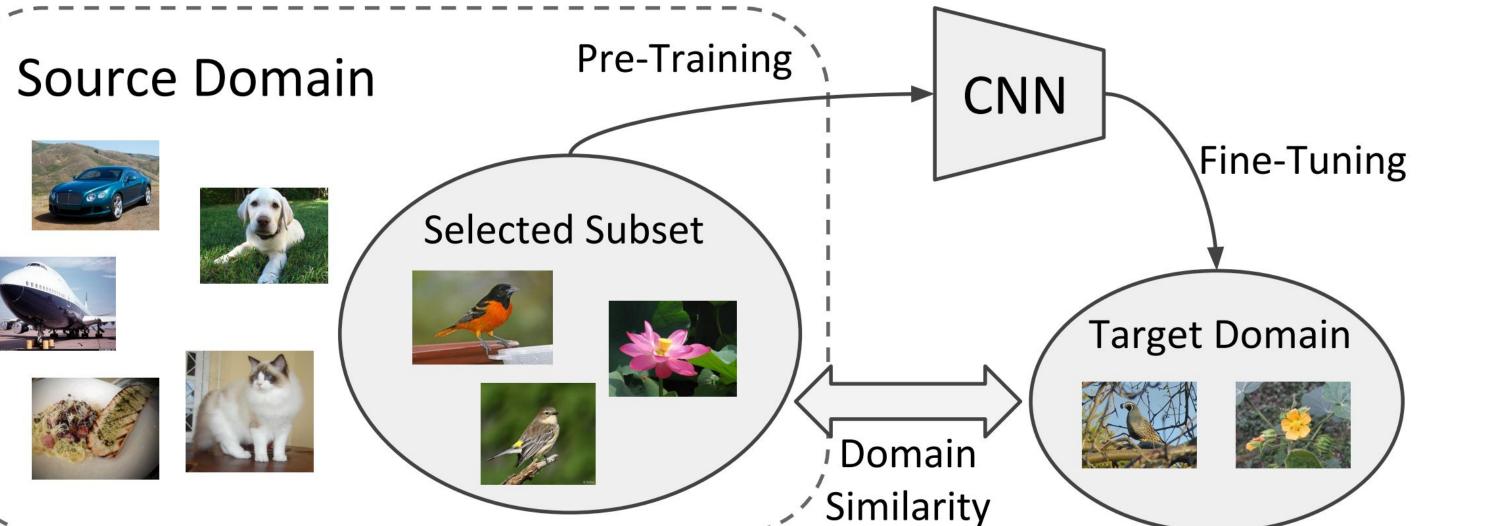
Subset B (585-class)

Method

Subset B (585-class): In Subset B (585-class): In Krause *et al*. [30] Bilinear-CNN [36] **Compact Bilinear Pooling** Zhang *et al.* [68] Low-rank Bilinear Pooli Kernel Pooling [1] **RA-CNN** [16] Improved Bilinear-CNN MA-CNN [69] DLA [65]

Domain-Specific Transfer Learning

• Source domain: ImageNet + iNaturalist. • Target domain: 7 fine-grained datasets. • Select a subset from source domain by similarity.

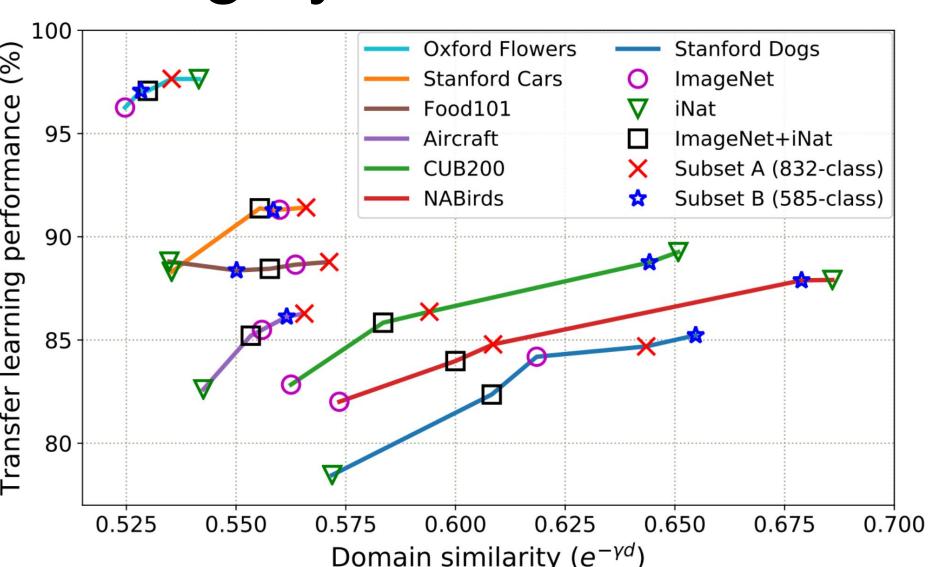


Transfer Learning Performance

JB200	Stanford Dogs	Flowers-102	Stanford Cars	Aircraft	Food101	NABirds
2.84	84.19	96.26	91.31	85.49	88.65	82.01
9.26	78.46	97.64	88.31	82.61	88.80	87.91
5.84	82.36	97.07	91.38	85.21	88.45	83.98
6.37	84.69	97.65	91.42	86.28	88.78	84.79
8.76	85.23	97.37	90.58	86.13	88.37	87.89

• ImageNet and iNaturalist are highly biased!

Similar source domain leads to better transfer learning. A novel direction of studying how to do better pre-training.



SOTA performance with off-the-self networks!

	CUB200	Stanford Dogs	Stanford Cars	Aircrafts	Food101
nception-v3	89.6	86.3	93.1	89.6	90.1
nception-ResNet-v2 SE	89.3	88.0	93.5	90.7	90.4
	82.0	-	92.6	-	-
	84.1	-	91.3	84.1	82.4
ng [17]	84.3	-	91.2	84.1	83.2
	84.5	72.0	-	-	-
ing [29]	84.2	-	90.9	87.3	-
	86.2	-	92.4	86.9	85.5
	85.3	87.3	92.5	-	-
N [35]	85.8	-	92.0	88.5	-
	86.5	-	92.8	89.9	-
	85.1	-	94.1	92.6	89.7