Collaborative Metric Learning

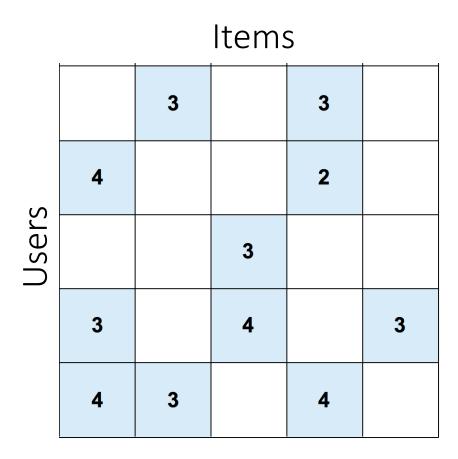
Andy Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, Deborah Estrin

Connected Experience Lab, Cornell Tech

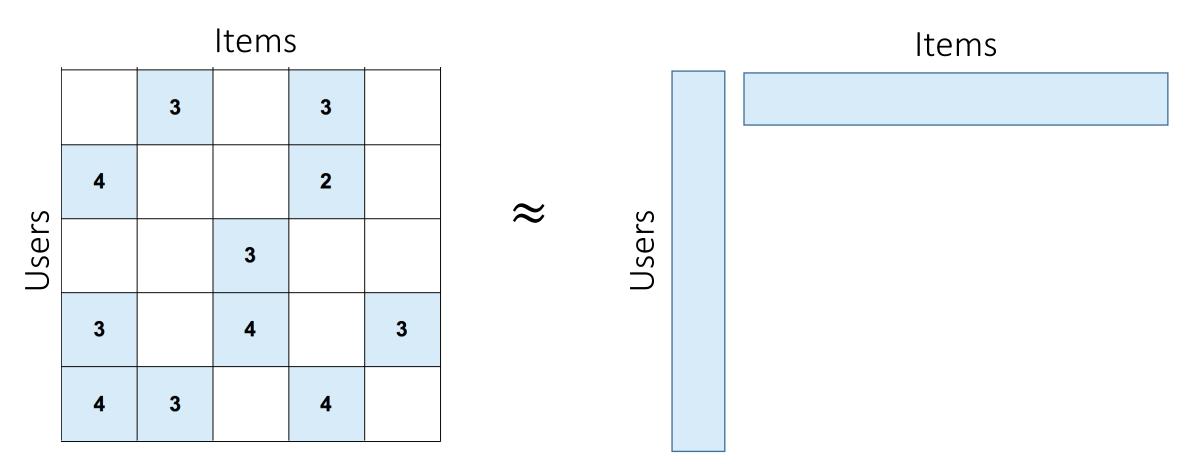
Collaborative Metric Learning

- A different perspective on collaborative filtering
- Better accuracy
- Extremely efficient Top-K recommendations
- Easy to interpret and extend

User-Item Matrix

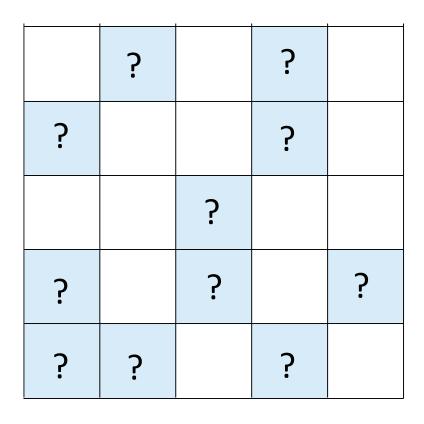


Matrix Factorization (MF)



Implicit Feedback

- Ubiquitous in today's online services
- Only positive feedback is available
- Traditional MF does not work



Matrix Factorization for Implicit Feedback

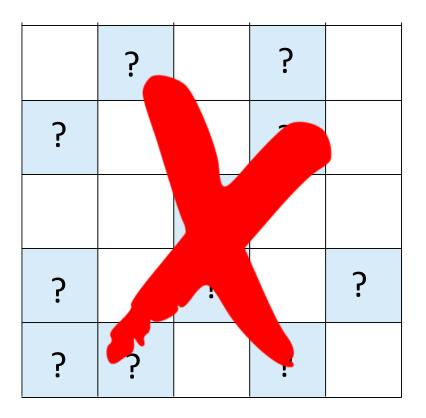
- Weighted Regularized Matrix Factorization (**WRMF**) [Hu08]
- Probabilistic Matrix Factorization (PMF) [Salakhutdinov08]
- Bayesian Personalized Ranking (BPR) [Rendle09]

and many more ...

Think Beyond Matrix

Explicit → Implicit

- No longer about estimating ratings
- But about modeling the relationships between different user/item pairs

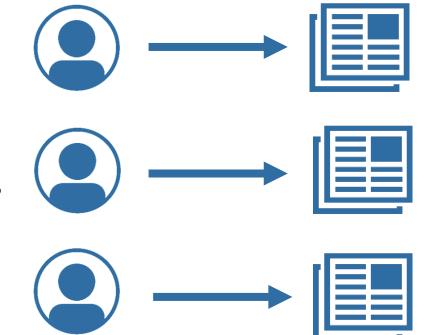


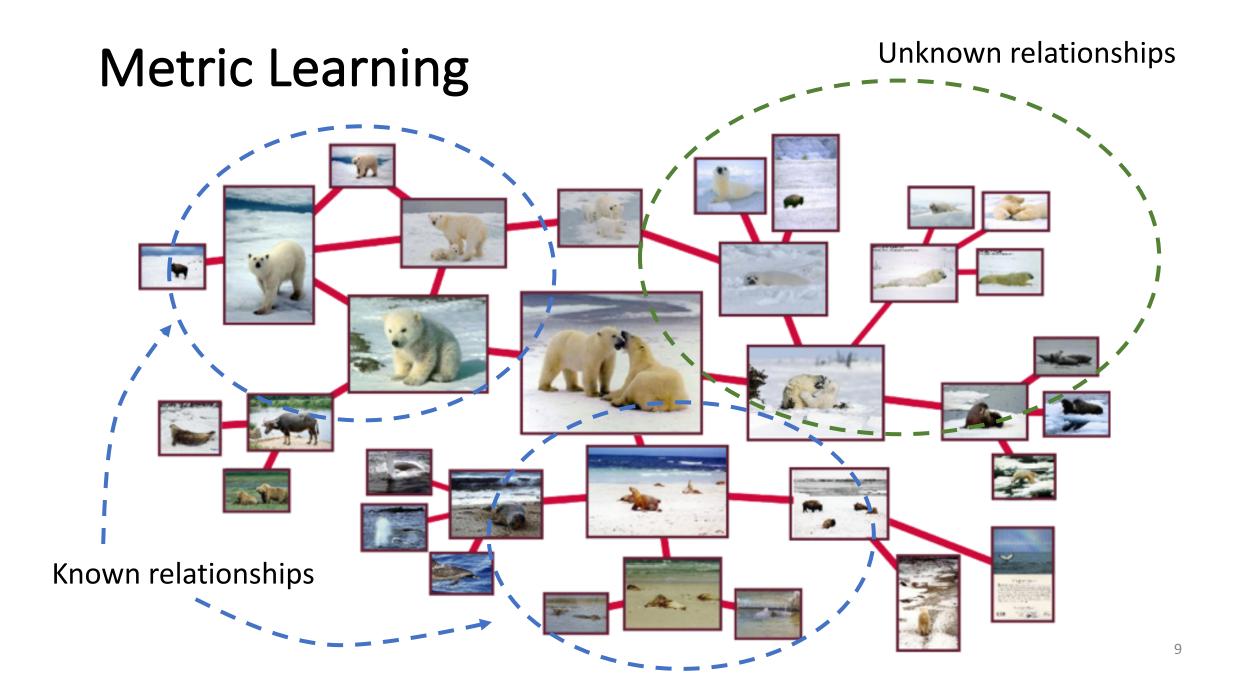
Think Beyond Matrix

Explicit → Implicit

- No longer about estimating ratings
- But about modeling the relationships

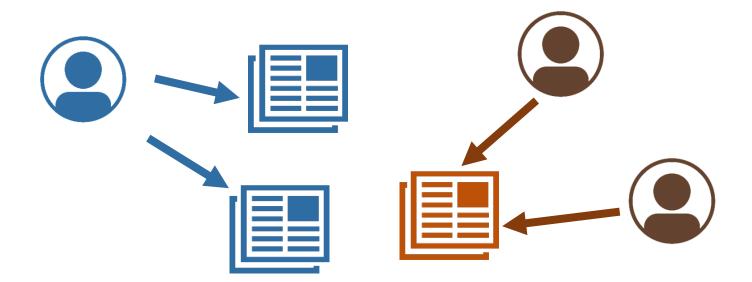
between different user/item pairs





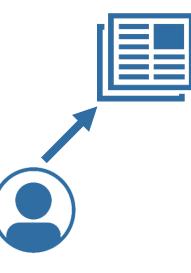
Collaborative Metric Learning

- Learn a joint user-item distance metric.
- The Euclidean distances reflect the relationships between users/items.



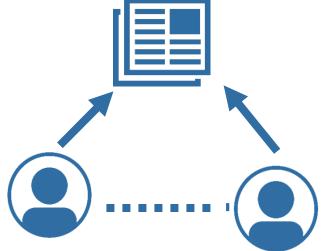
Based on the inherent Triangular Inequality of Metric Learning – If <u>A is close to B</u>, and <u>B is close</u> to <u>C</u>, then <u>A is close to C</u>.

- Fit the model with implicit feedback
 - 1. An user is pulled closer to the items she liked
 - 2. Other similar users are pulled closer.
 - 3. The items users liked are also pulled closer.
- Top-K recommendations are simply KNN search (a well-optimized task)



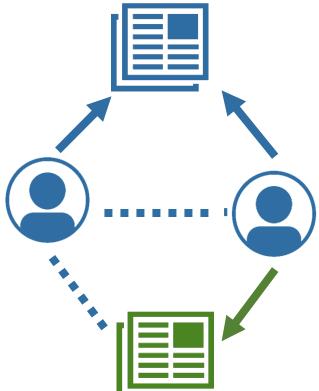
Based on the inherent Triangular Inequality of Metric Learning – If <u>A is close to B</u>, and <u>B is close</u> to <u>C</u>, then <u>A is close to C</u>.

- Fit the model with implicit feedback
 - 1. An user is pulled closer to the items she liked
 - 2. Other similar users are pulled closer.
 - 3. The items users liked are also pulled closer.
- Top-K recommendations are simply KNN search (a well-optimized task)

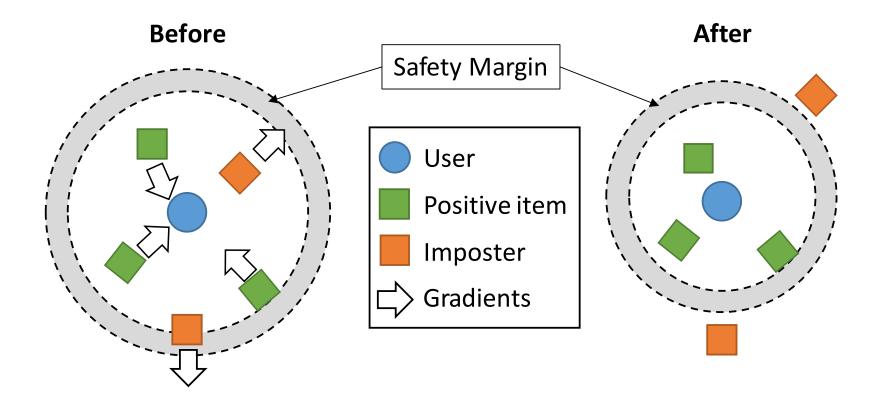


Based on the inherent Triangular Inequality of Metric Learning – If <u>A is close to B</u>, and <u>B is close</u> to <u>C</u>, then <u>A is close to C</u>.

- Fit the model with implicit feedback
 - 1. An user is pulled closer to the items she liked
 - 2. Other similar users are pulled closer.
 - 3. The items users liked are also pulled closer.
- Top-K recommendations are simply KNN search (a well-optimized task)



Collaborative Large Margin Nearest Neighbor



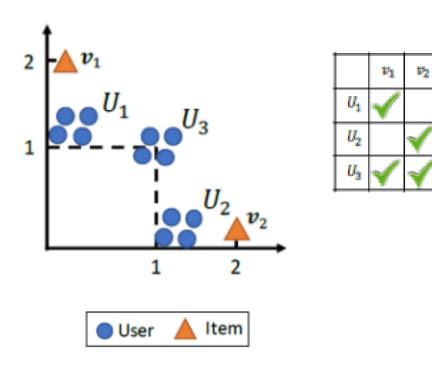
* The outline of figure is inspired by Weinberger, Kilian Q., John Blitzer, and Lawrence Saul. "Distance metric learning for large margin nearest neighbor classification." *Advances in neural information processing systems* 18 (2006): 1473.

Pitfalls of Matrix Factorization (Dot-Product)

• Dot-Product violates triangle inequality → misleading embedding.

Pitfalls of Matrix Factorization (Dot-Product)

• Dot-Product violates triangle inequality → misleading embedding.



Matrix Factorization

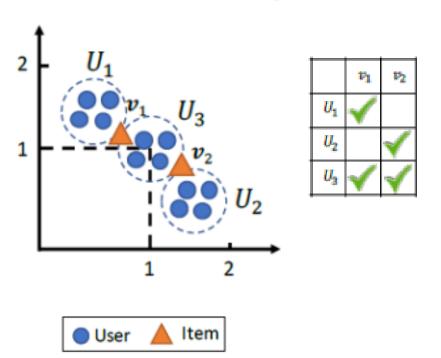
 $V_1^T V_2 = 0$: does not reflect that they are both liked by U_3

 $U_1^T U_2 = 0$: does not reflect that they both share the same interest as U_3

Collaborative Metric Learning Embedding

• Euclidian distance faithfully reflects the relative relationships.

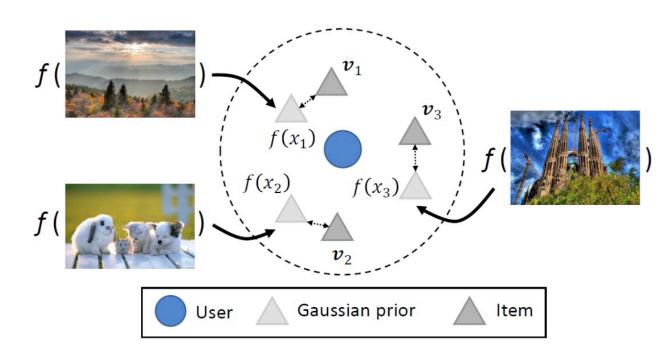
Collaborative Metric Learning



Integrating Item Features

- Use a learnable function (e.g. Multi-Layer Perceptron) to project features into user-item embedding.
- Treat the projections as a prior

for items' locations.

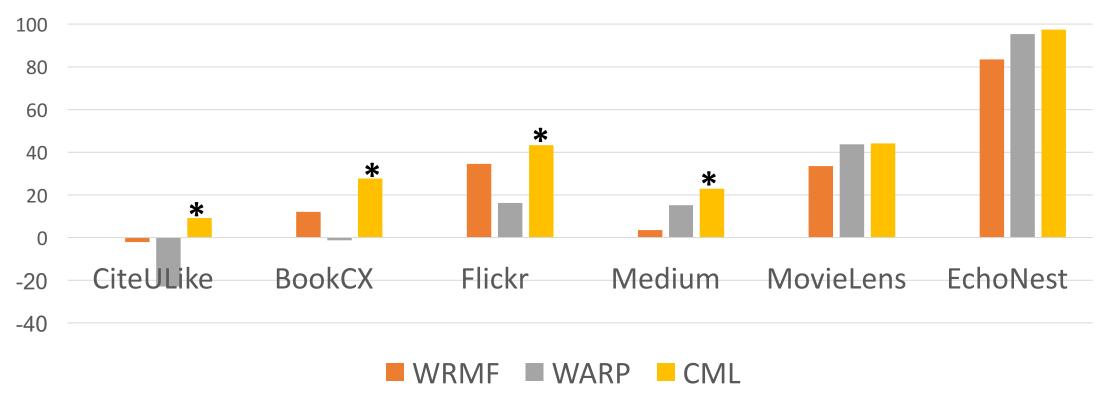


Evaluation

- 6 Datasets from Different Domains
 - Papers CiteULike
 - Books BookCrossing
 - Photography Flickr
 - Articles Medium
 - Movies MovieLens
 - Music EchoNest

Accuracy (Recall@50)

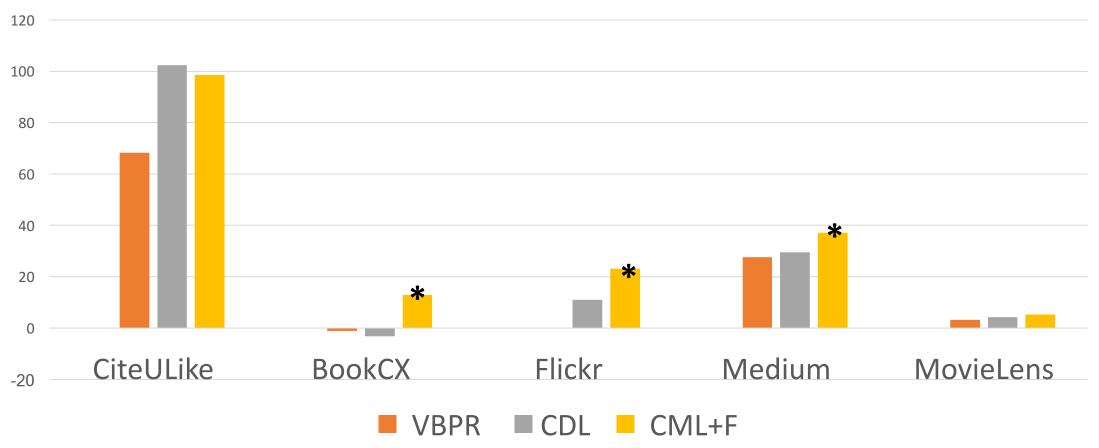
Recall@50 Improvements Over BPR (%)



* Indicate that CML > the second best algorithm is statistically significant according to Wilcoxon signed rank test ²⁰

Accuracy (with Item Features)

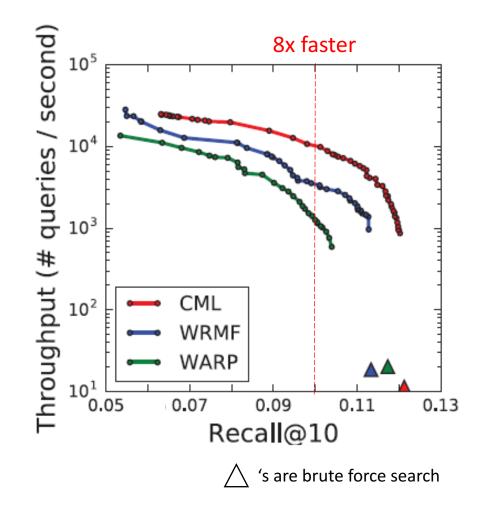
Recall@50 Improvements Over Factorization Machine (%)



* Indicate that CML > the second best algorithm is statistically significant according to Wilcoxon signed rank test 21

Efficiency

- All optimized with LSHs
- CML's throughput is improved by 106x with only 2% reduction in accuracy
- Over 8x faster than (optimized) MF models given the same accuracy



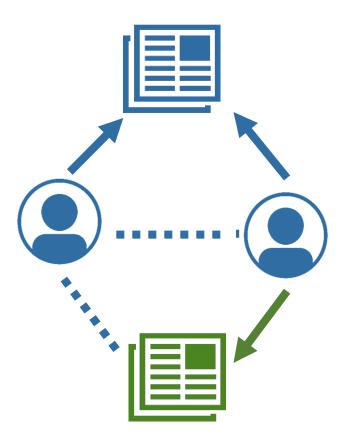
Embedding Interpretability

Α

B

Conclusions

- The notion of user-item matrix and matrix factorization becomes less applicable with implicit feedback.
- CML is a metric learning model that has
 - better accuracy, efficiency, interpretability, and extensibility.
- Applying metric-based algorithms, such as K-means, and SVMs, to other recommendation problems.



Thank you!

